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Abstract

We characterize and measure a long-run risk return tradeoff for the valuation of
financial cash flows that are exposed to fluctuations in macroeconomic growth. This
tradeoff features cash flow components that are realized far into the future but are
still reflected in current asset values. We use the recursive utility model with empirical
inputs from vector autoregressions to quantify this tradeoff; and we study the long-run
risk differences in aggregate securities and in portfolios constructed based on the ratio
of book equity to market equity. We isolate features of the economic model needed
for the long run valuation differences among these portfolios to be sizable. Finally,
we show how the resulting measurements vary when we consider alternative statistical
specifications of cash flow and consumption growth.
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1 Introduction

Applied time series analysts have studied extensively how macroeconomic aggregates re-
spond in the long run to underlying economic shocks. For instance, Cochrane (1988) used
time series methods to measure the importance of permanent shocks to output and dis-
cussed the associated measurement challenges. Blanchard and Quah (1989) advocated using
restrictions on long run responses to identify economic shocks and measure their importance.
Many researchers have subsequently applied the Blanchard-Quah approach to the study of
macroeconomic time series. This paper develops and applies methods for integrating asset
valuation of cash flows with stochastic growth into this analysis. The unit root contribu-
tions measured by macroeconomists are a source of long-run risk that should be reflected
in the valuation of cash flows. To quantify the role of long-run risk, we use tools that are
complementary to the methods developed by Campbell and Shiller (1988). Our analysis is
motivated in part by other recent research seeking to construct cash flow betas, (e.g, see
Bansal, Dittmar, and Lundblad (2005)), but our interpretation and justification for such
objects is novel.

Valuation of cash flows reflect expected growth, discounting and riskiness. In Markov
economies with stationary growth, the value of cash flows in the distant future declines as
the horizon increases at a rate that is approximately constant. When this decay rate is small,
future cash flows have a durable contribution to current values.

As is known from the Gordon growth model, a small decay rate in the contribution
to value reflects in part cash flow growth. When cash flows grow relatively quickly, their
contribution to value is more persistent. Since dividend growth rates projected far into the
future are approximately constant, there is a well defined adjustment for cash flow growth.
By adding the dividend growth rate to the value decay rate, we extract a risk-adjusted
discount rate. This rate is applicable to the components of the cash flow growth process
that are realized in the distant future. The risk adjustment comes from two sources. One
is the direct random fluctuation in the growth rates of the cash flow, and the other is the
riskiness that is imputed by the valuation of this cash flow. Our paper focuses on the
characterization and measurement of this long-run risk relation.

We characterize long-run cash flow risk by exploiting a mathematical formulation of asset
valuation developed in Hansen and Scheinkman (2005). This method computes a long-run
dominant pricing component for cash flows that grow stochastically. A family of valuation
operators indexed by the payoff horizon share common factors called eigenfunctions. One
of these eigenfunctions is dominant in the long run in a well defined sense. It isolates
value movements due to cash-flow riskiness far into the future. By applying this apparatus,
we quantify what model ingredients have important influences on the valuation of growth
components.

Value decompositions of the type just described require a specific economic model and
empirical inputs to characterize the growth and riskiness of cash flows. The calculations in
this paper are based on a well specified, albeit highly stylized, model. Following Epstein
and Zin (1989b), Weil (1990), Tallarini (1998), Bansal and Yaron (2004) and many others,
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we use a recursive utility framework of Kreps and Porteus (1978). For these preferences,
the intertemporal composition of risk matters to the decision maker. Risk cannot simply be
reduced or averaged out. Instead, the timing of when information is revealed about intertem-
poral consumption lotteries matters in the implied preference ordering. As emphasized by
Epstein and Zin (1989b), these preferences also offer a convenient and appealing way to
break the preference link between risk aversion and intertemporal substitution. Bansal and
Yaron (2004) showed that predictable components in consumption growth can amplify the
risk premia in security market prices. To study how long-run risk depends on intertemporal
substitution and on risk aversion and predictable components to consumption growth, we
extend an analytical approach suggested by Kogan and Uppal (2001). Formally, we expand
the equilibrium pricing relation around an economy in which investor preferences have a
unitary elasticity of intertemporal substitution (EIS).

While we focus on a recursive utility specification, the intertemporal timing of risk matters
in other models as well, including models that feature habit persistence (e.g. Constantinides
(1990), Heaton (1995), and Sundaresan (1989)) and models of staggered decision-making
(e.g. see Lynch (1996) and Gabaix and Laibson (2002).) The approach we adopt in this
paper can be extended to apply to these models as well.

In addition to an economic model, our value decompositions require statistical inputs that
quantify long-run stochastic growth in macroeconomic variables, particularly in consump-
tion. The decompositions also require knowledge of the long-run link between stochastic
cash flows and the macroeconomic risk variables. These components of financial risk cannot
be fully diversified and hence require nontrivial risk adjustments. The long-run nature of
these risks adds to the statistical challenges just as it does in the related macroeconomic
literature.

In this paper like many others, we study the intertemporal composition of risk using (log)
linear vector autoregressive (VAR) models of consumption and cash flows. These models are
designed to accommodate transient dynamics in a flexible way. They are convenient time
series models that allow us to explore the statistical accuracy of the risk measurements
along with the sensitivity of these measurements to changes in the model specification.
Our focus on long-run risk deliberately stretches the VAR methods beyond their ability to
capture transient dynamics. As a consequence, this paper explores the resulting empirical
challenges. How sensitive are risk-measures to details in the specification of the time series
evolution? How accurately can we measure these components? When should we expect these
components to play a fundamental role in valuation? In addition to providing a long-run
valuation counterpart to the familiar risk-return tradeoff, this paper examines the sensitivity
of the measurements to estimation and model uncertainty.

In section 2 we use a finite state Markov chain to illustrate our methods. In section 3
we use the recursive utility model to show why the intertemporal composition of risk might
matter to an investor. We also develop a general approximation to the model’s solution. In
section 4 we identify important aggregate shocks that affect long-run consumption. Section 5
develops a notion of risk based on the low frequency properties of cash flows and consumption,
and section 6 constructs the implied measures of the risk-return relation. Section 7 explores
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the valuation sensitivity of alternative specifications of the long-run statistical relationship
between consumption and portfolio cash flows. Section 8 concludes.

2 Markov Chain Example

Prior to developing a model economy with empirical inputs, we illustrate our analytical
approach when the dynamic evolution can be captured by a finite state Markov chain. This
allows us to use the familiar theory of matrices to depict our results.

Suppose that the dynamics of cash flows and consumption are determined by an N state
Markov chain. State n of this Markov chain is denoted xn, and the probabilities of transiting
from one state to another are given by:

am,n = Prob(xt+1 = xn|xt = xm) .

We assume that the resulting probability matrix is irreducible. That is, for some integer τ ,
the entries of Aτ are strictly positive, where A is formed from the am,n’s.

Each entry am,n is scaled by two objects. One is the stochastic discount factor between
adjacent dates. Exploiting the Markov property, the discount factor for the next period state
xn conditioned on the current state being xm is sm,n and is assumed to be strictly positive.1

The second object in our scaling is a stochastic cash flow growth factor. This scaling
reflects our interest in the effects of different specifications of long-run risk. This second
factor can also be state dependent. Conditioned on being in state xm in the current period,
the next period growth factor is dn,m and assumed to be strictly positive. This leads us to
study a new matrix P with entries:

pm,n = am,nsm,ndm,n. (1)

For each row, the sums across columns (sums over n) are typically not unity. In other words,
we cannot interpret each row of P as a vector of probabilities.

We are interested in the discounted cash flows:

Pt

Dt

= E

[ ∞∑
j=1

(
j∏

τ=1

St+τ,t+τ−1

)
Dt+j

Dt

|xt

]
(2)

where {Dt+j : j ≥ 0} is a stochastic cash flow process with price Pt at date t and St+1,t

is a stochastic discount factor process between date t and date t + 1. We use the matrix
P to compute and decompose this valuation by the payoff horizon [index j in formula (2).
Suppose the cash flow is always positive and that its ratio Dt+1

Dt
depends only xt and xt+1.

1This transformation of the probabilities is familiar from asset pricing where the “risk-neutral” distri-
bution is obtained from the pricing model and the objective distribution. We do not, however, rescale the
discount factors to behave as probabilities.
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Given this limited dependence on the Markov state, we use this ratio to construct dm,n. As
a consequence, term j in the infinite sum on the right-hand side of (2) can be expressed as:

E

[(
j∏

τ=1

St+τ,t+τ−1

)
Dt+j

Dt

|xt = xm

]
= em(P)j1N

where em is a row vector of zeros with a one in the mth column and 1N is an N -dimensional
column vector of ones.

The long-run characteristics of cash flows are encoded in the matrix P , and the contribu-
tions of these characteristics to value are determined by the properties of this matrix raised
to the power j. There are temporary components to cash flows as well that, for valuation
purposes, may be dominated by the long-run characteristics of cash flows. These latter char-
acteristics are determined by the behavior of Pj as j gets large and hence can be evaluated
by examining the eigenvalues of P .

Raising a matrix to a power preserves the eigenvectors. Eigenvalues are altered but
in a straightforward way. The original eigenvalues are raised to the same power as the
matrix. Since the entries of the matrix P raised to some power are strictly positive, there is
principal eigenvalue that is positive and a corresponding eigenvector with positive entries.2

The principal eigenvalue has the largest magnitude among all eigenvalues of P , and as a
consequence it dominates in the long run.

The principal eigenvector, f ∗, solves:

−ν = max
f≥0

min
m

log(emPf)− log(emf)

where f is an N dimensional column vector. The objective is the logarithm of the ratio of
payoff value to payoff where f is the vector of payoffs in each of the N Markov states. The
objective is the one-period counterpart to the logarithm of the price-dividend ratio. The
objective is to guarantee that this ratio is large in all states. It is a standard result (and
straightforward to show) that the solution to this problem equalizes the objective:

log(umPf)− log(umf)

across the alternative j states. As a consequence, this solution f ∗ is also an eigenvector with
positive entries associated with a positive eigenvalue:

Pf ∗ = exp(−ν)f ∗.

where −ν is the optimized objective.
The positive eigenvalue exp(−ν) strictly dominates all others. In particular, let g∗ be the

row eigenvector associated with the eigenvalue exp(−ν):

g∗P = exp(−ν)g∗.

2This is known from the Perron-Frobenius theory of matrices.
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For any positive f

lim
τ→∞

exp(ντ)(P)τf =
(g∗f)

(g∗f ∗)
f ∗.

Thus as the valuation horizon gets large, the vector of values are approximately proportional
to f ∗, provided of course that (g∗f) is not zero. Moreover, when f has strictly positive
entries,

lim
τ→∞

−1

τ
[log(P)τf ] = ν1N .

Thus ν is the asymptotic decay rate in valuation, and the eigenvector f ∗ gives the limiting
distribution of values across states.

From the Gordon growth model, we know that the decay rate ν is influenced by two
factors, asymptotic (risk adjusted) discount rates and asymptotic growth rates in cash flows.
When cash flows grow faster values decay slower. Thus to produce a risk adjusted discount
rate, we need to adjust ν for dividend growth. To measure this, we form a matrix G with
entries amndmn. The asymptotic cash flow growth rate is the logarithm ε of the dominant
eigenvalue of this matrix, and the implied discount rate is ε + ν. This discount rate includes
of an adjustment for long-run risk.

To compute asymptotic discount rates, as we saw in formula (1) we must specify three
objects: a) the transition probabilities amn, b) the stochastic discount factors smn implied
by an economic model, and c) the growth factors dmn for the cash flow growth. In the next
section, section 3, we describe a parameterized class of economic models for the stochastic
discount factor.

To characterize the implications for long-run risk, we are interested in how value decay
rates and discount rates change as we alter the long-run risk exposure. As we change the
specification dmn, we alter the implied discount rate giving rise to a long-run risk return
relation. For instance, consider a specification:

dmn =

{
d̃ if n = `
1 otherwise

.

This corresponds to a stochastic growth specification that features Markov state `. Growth
at a rate log d̃ only occurs when state ` is realized, otherwise there is no growth. By changing
` and possibly d̃, we may characterize a long-run risk return relation. For instance, this allows
us to quantify the discount rate differences between low growth and high growth states of
the Markov chain.

In section 6 we use familiar securities from financial economics as cash flows in our
characterization long-run risk. The pertinent components of cash flows that determine the
long-run returns are martingale components to these cash flows. Valuation is dictated by
the importance of the macroeconomic shocks with long-run consequences to the martingale
component of cash flows.

In the remainder of the paper we will use linear Markov processes instead of Markov
chains. We do this so that we can explore temporal dependence in a more flexible manner.
To support this application, we extend the approach just described by replacing matrices
with operators that integrate over continuous states. This extension is given in section 5.
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3 Asset Pricing

Models of asset pricing link investor preferences and opportunities to deduce equilibrium
relations for returns and prices. These models explain return heterogeneity by the exis-
tence of risk premia. Investors require larger expected returns as compensation for holding
riskier portfolios. Alternative asset pricing models imply alternative risk-return tradeoffs.
Equivalently [e.g, see Hansen and Richard (1987)] they imply an explicit model of stochastic
discount factors, the market determined variables St+1,t used by investors to value one-period
and hence multiple period assets.

There remains considerable controversy within the asset pricing literature about the
feasibility of constructing an economically meaningful model of stochastic discount factors
and hence risk premia. Nevertheless in this section we find it useful to consider one such
model that, by design, leads to tractable restrictions on economic time series. This model is
rich enough to help us examine return heterogeneity as it relates to risk and to understand
better the intertemporal values of equity.

3.1 Preferences

We follow Epstein and Zin (1989b) and Weil (1990) by depicting preferences recursively.
As we show below, this model of preferences provides a simple justification for examining a
long-run relationship between consumption and returns. In addition it provides a convenient
separation between risk aversion and the elasticity of intertemporal substitution [see Epstein
and Zin (1989b)]. This separation allows us to examine the effects of changing risk exposure
with modest consequences for the risk-free rate. Many of the measurement challenges that
emerge in this economic model carry over to others as well, including any model that features
the intertemporal composition of risk, including models in which investor preferences display
intertemporal complementarity or “habit persistence.”

In our specification of these preferences, we use a CES recursion:

Vt =
[
(1− β) (Ct)

1−ρ + βRt(Vt+1)
1−ρ

] 1
1−ρ . (3)

The random variable Vt+1 is the continuation value of a consumption plan from time t + 1
forward. The recursion incorporates the current period consumption Ct and makes a risk
adjustment Rt(Vt+1) to the date t + 1 continuation value. We use a CES specification for
this risk adjustment as well:

Rt(Vt+1)
.
=

[
E (Vt+1)

1−θ |Ft

] 1
1−θ

where Ft is the current period information set. The outcome of the recursion is to assign a
continuation value Vt at date t.

When there is perfect certainty, the value of 1/ρ determines the elasticity of intertem-
poral substitution (EIS). A measure of risk aversion depends on the details of the gamble
being considered. As featured by Kreps and Porteus (1978), preferences like these relax the
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restriction that intertemporal compound lotteries can be reduced by simply integrating out
the uncertainty conditioned on current information. Instead the intertemporal composition
of risk matters. As we will see, this will be reflected explicitly in the equilibrium asset prices
that we characterize. On the other hand, the aversion to simple wealth gambles is given by
θ.

Under a Cobb-Douglas specification (ρ = 1), recursion (3) becomes:

Vt = (Ct)
(1−β)Rt(Vt+1)

β.

In what follows, the case of ρ = 1 will receive special attention because of its analytical
tractability.

To include stochastic growth in consumption we study an alternative recursion that scales
continuation values by consumption:

Vt

Ct

=

[
(1− β) + βRt

(
Vt+1

Ct+1

Ct+1

Ct

)1−ρ
] 1

1−ρ

Since consumption and continuation values are positive, we find it convenient to work with
logarithms instead. Let vt denote the logarithm of the continuation value relative to the
logarithm of consumption, and let ct denote the logarithm of consumption. We rewrite
recursion (3) as

vt =
1

1− ρ
log ((1− β) + β exp [(1− ρ)Qt(vt+1 + ct+1 − ct)]) , (4)

where Qt is the so-called risk-sensitive recursion:3

Qt(vt+1) =
1

1− θ
log E (exp [(1− θ)vt+1] |Ft) .

The risk sensitive recursion is convenient for our subsequent characterizations.

3.2 Shadow Valuation

Consider the shadow valuation of a given consumption process. The utility recursion gives
rise to a corresponding valuation recursion and implies stochastic discount factors used to
represent this valuation. In light of the intertemporal budget constraint, the valuation of
consumption in equilibrium coincides with wealth.

The first utility recursion (3) is homogeneous of degree one in consumption and the future
continuation utility. Use Euler’s Theorem to write:

Vt = (MCt)Ct + E [(MVt+1)Vt+1|Ft] (5)

3See Hansen and Sargent (1995) and Tallarini (1998) and the relations they show to the risk sensitive
control literature.
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where

MCt = (1− β)(Vt)
ρ(Ct)

−ρ

MVt+1 = β(Vt)
ρ [Rt(Vt+1)]

θ−ρ (Vt+1)
−θ

The right-hand side of (5) measures the shadow value of consumption today and the contin-
uation value of utility tomorrow.

Let consumption be numeraire, and suppose for the moment that we value claims to the
future continuation value Vt+1 as a substitute for future consumption processes. Divide both
sides of (5) by MCt and use marginal rates of substitution to compute shadow values. The
shadow value of a claim to a continuation value is priced using MVt+1

MCt
as a stochastic discount

factor. A claim to next period’s consumption is valued using

St+1,t =
MVt+1MCt+1

MCt

= β

(
Ct+1

Ct

)−ρ (
Vt+1

Rt(Vt+1)

)ρ−θ

(6)

as a stochastic discount factor. There are two (typically highly correlated) contributions
to the stochastic discount factor in formula (6). One is the direct consumption growth
contribution familiar from the Lucas (1978) and Breeden (1979) model of asset pricing. The
other is the continuation value relative to its risk adjustment. The contribution is forward-
looking and is present provided that ρ and θ differ.

Given the homogeneity in the recursion used to depict preferences, equilibrium wealth
is given by Wt = Vt

MCt
. Substituting for the marginal utility of consumption, the wealth-

consumption ratio is:
Wt

Ct

=
1

1− β

(
Vt

Ct

)1−ρ

.

Taking logarithms, we find that

log Wt − log Ct = − log(1− β) + (1− ρ)vt (7)

When ρ = 1 we obtain the well known result that the wealth consumption ratio is constant.
A challenge in using this model empirically is to measure the continuation value, Vt+1,

which is linked to future consumption via the recursion (3). One approach is to use the
relationship between wealth and the continuation value, Wt = Vt/MCt, to construct a rep-
resentation of the stochastic discount factor based on consumption growth and the return to
a claim on future wealth. In general this return is unobservable. An aggregate stock market
return is sometimes used to proxy for this return as in Epstein and Zin (1989a), for exam-
ple; or other components can be included such as human capital with assigned market or
shadow values (see Campbell (1994)). In addition to requiring the use of a market measure
of wealth, this approach precludes the special case in which ρ = 1. Since the consumption
wealth ratio is constant when ρ = 1, we cannot infer the continuation value from wealth and
consumption. Moreover, when ρ is close to one any volatility in the stochastic discount factor
attributed to wealth should also be reflected in consumption volatility. This implication is
typically ignored even when consumption and wealth are used simultaneously.

8



In this investigation, like that of Restoy and Weil (1998), we maintain the direct link
between the continuation value and the stochastic process governing future consumption.
In the case of logarithmic intertemporal preferences (ρ = 1), the link between future con-
sumption and the continuation value easily can be calculated as we demonstrate in the next
section. It is well understood that ρ = 1 leads to substantial simplification in the equilibrium
prices and returns (e.g. see Schroder and Skiadas (1999).)

Approximate characterization of equilibrium pricing for recursive utility have been pro-
duced by Campbell (1994) and Restoy and Weil (1998). In what follows we use a distinct
but related approach. While Campbell (1994) and Restoy and Weil (1998) use log-linear
approximation of budget constraints, we follow Kogan and Uppal (2001) by approximating
around an explicit equilibrium computed when ρ = 1. Our approximation is in the pa-
rameter ρ.4 Campbell and Viceira (2002) (chapter 5) show the close connection between
approximation around the utility parameter ρ = 1 and approximation around a constant
consumption-wealth ratio for portfolio problems.

Our application in what follows is to the study of a simple model of equilibrium price de-
termination. We find some useful and intriguing contrasts between approximation methods.
There are interesting conceptual differences in the implied one-period risk prices and the
implied consumption-wealth ratios. Since our aim to study the implications for ρ and θ for
tail returns, we will compute ρ derivatives of long-run risk for alternative values of θ. Before
turning to a discussion of the ρ expansion, we consider the special case in which ρ = 1.

3.3 The special case in which ρ = 1

As in many papers in asset pricing, we use a ρ = 1 specification as a convenient benchmark.
Campbell (1996) argues for less intertemporal substitution and Bansal and Yaron (2004)
assume more. We will explore such deviations subsequently. The ρ = 1 is convenient for
our purposes because when consumption has a log linear time series evolution, we can solve
the for the continuation value. This feature gives us the flexibility to include important low
frequency time series components in the model solution.

The ρ = 1 limit in recursion (4) for continuation values:

vt = βQt(vt+1 + ct+1 − ct). (8)

The stochastic discount factor in this special case is:

St+1,t ≡ β

(
Ct

Ct+1

) [
(Vt+1)

1−θ

Rt(Vt+1)1−θ

]
.

4Strictly speaking, ρ = 1 is ruled out in the parameterization considered by Restoy and Weil (1998)
including the return-based Euler equation exploited in their calculations. The economy we study is different
from that Kogan and Uppal (2001), but they suggest that extensions in the directions that interest us would
be fruitful.
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Notice that the term associated with the risk-adjustment satisfies

E

[
(Vt+1)

1−θ

Rt(Vt+1)1−θ
|Ft

]
= 1

and can thus be thought of as distorting the probability distribution. Recursion (8) was used
by Tallarini (1998) in his study of risk sensitive business cycles.

To make our formula for the marginal rate of substitution operational, we need to compute
Vt+1 using the equilibrium consumption process. Suppose that the first-difference of the
logarithm of equilibrium consumption has a moving-average representation:

ct − ct−1 = γ(L)wt + µc

where {wt} is a vector, iid standard normal process and

γ(z) =
∞∑

j=0

γjz
j

where γj is a row vector and
∞∑

j=0

|γj|2 < ∞.

This linear times series representation is adopted to help us interpret some of the time series
evidence that we will discuss subsequently. Log-linear approximations are often used in
macroeconomic modelling, although in what follows we will take the log-linear specification
to be correct.

Guess a solution:
vt = υ(L)wt + µv.

Rewrite recursion (8) as:

vt =
β

1− θ
log E (exp [(1− θ)(vt+1 + ct+1 − ct)] |Ft) .

Thus υ must solve:
zυ(z) = β[υ(z)− υ(0) + γ(z)− γ(0)],

which in particular implies that

υ(0) + γ(0) = γ(β).

Solving for υ and µv:

υ(z) = β
γ(z)− γ(β)

z − β
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µv =
β

1− β
[µc +

(1− θ)

2
γ(β) · γ(β)].

The formula υ(z) is familiar from Hansen and Sargent (1980) and is the solution to the
forecasting problem:

υ(L)wt =
∞∑

j=1

βjE (ct+j − ct+j−1 − µc|Ft)

pervasive in the literature on linear rational expectations. The risk parameter θ enters only
the constant term of continuation value process.

The logarithm of the stochastic discount factor can now be depicted as:

st+1,t ≡ log St+1,t = −δ − γ(L)wt+1 − µc + (1− θ)γ(β)wt+1 − (1− θ)2γ(β) · γ(β)

2

where β = exp(−δ). The term γ(β)wt+1 is the solution to

(1− β)
∞∑

j=0

βj [E(ct+j|Ft+1)− E(ct+j|Ft)] .

It is a geometric average of current and future consumption responses to a shock at a fixed
date (say date t+1). The discount factor dictates the importance of future responses in this
weighted average. As the subjective discount factor β tends to unity, γ(β) converges to γ(1)
which is cumulative growth rate response or equivalently the limiting consumption response
in the infinite future.

The stochastic discount factor includes both the familiar contribution from contempo-
raneous consumption plus a forward-looking term that discounts the impulse responses for
consumption growth. For instance, the price of payoff φ(wt+1) is given by:

E [exp(st+1)φ(wt+1)|Ft] = E [exp(st+1)|Ft]
E [exp(st+1)φ(wt+1)|Ft]

E [exp(st+1)|Ft]

The first term is a pure discount term and the second the is the expectation of φ(wt+1) under
the so-called risk neutral probability distribution. The logarithm of the first term is:

log E [exp(st+1)|Ft] = −δ −
∞∑

j=0

γj+1wt−j − (1− θ)γ(β) · γ0 +
γ0 · γ0

2
,

which is minus the yield on a discount bond. The wt+1 coefficient on the innovation to the
logarithm st+1,t of the stochastic discount factor is

−γ0 + (1− θ)γ(β).

This vector is also the mean of the normally distributed shock wt+1 under the risk-neutral
distribution. The adjustment −γ0 is familiar from Hansen and Singleton (1983) and the term

11



(1− θ)γ(β) is the adjustment for the intertemporal composition of consumption risk implied
by the Kreps and Porteus (1978) specification of recursive utility. Large values of the risk
parameter θ enhance the importance of this component. This latter effect is featured in the
analysis of Bansal and Yaron (2004).5

The following Markov example will be used in our calculations.

Example 3.1. Suppose that consumption evolves according to:

ct+1 − ct = µc + Ucxt + γ0wt+1

where zt evolves according to first-order vector autoregression:

xt+1 = Gxt + Hwt+1.

The matrix G has strictly stable eigenvalues (eigenvalues with absolute values that are strictly
less than one), and {wt+1 : t = 0, 1, ...} is iid normal with mean zero and covariance matrix
I. Then for j > 0,

γj = UcG
j−1H,

and
vt = Uvxt + µv

where
Uv

.
= βUc(I − βG)−1,

µv
.
=

β

1− β

[
µc +

(1− θ)

2
γ(β) · γ(β)

]
,

and
γ(β) = γ0 + βUc(I −Gβ)−1H.

The logarithm of the stochastic discount factor is:

st+1,t = −δ − µc − Ucxt − γ0wt+1 + (1− θ)γ(β)wt+1 − (1− θ)2γ(β) · γ(β)

2

While this model has a simple and usable characterization of how temporal dependence
in consumption growth alters risk premia, it has the counterfactual implication of risk premia
that are time invariant. Other authors, including Campbell and Cochrane (1999) argue that
risk premia vary over the business cycle. Time varying risk premia could be added to the
model by allowing for stochastic variation in volatility as in Bansal and Yaron (2004). This
complexity will challenge further the measurements we describe.

5Anderson, Hansen, and Sargent (2003) suggest a different interpretation for the parameter θ. Instead of
risk, this parameter may reflect model misspecification that investors confront by not knowing the precise
riskiness that they must confront in the marketplace. As argued by Anderson, Hansen, and Sargent (2003),
under this alternative interpretation, |(1− θ)γ(β)| is measure of model misspecification that investors have
trouble disentangling because this misspecification is disguised by the underlying shocks that impinge on
investment opportunities.
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Because of the logarithmic nature of preferences, wealth in this economy is proportional
to consumption

Wt =
Ct

1− β
.

As noted by Gibbons and Ferson (1985), we may use the return on the wealth portfolio as
a proxy for the consumption growth rate. In particular, the return on a claim to wealth is:

Rw
t+1 =

Wt+1

βCt

1−β

=
Ct+1

βCt

.

Thus
rw
t+1 = ct+1 − ct − log β

This leads Campbell and Vuolteenaho (2003) and Campbell, Polk, and Vuolteenaho (2005)
to use a market wealth return as a proxy for consumption growth. With this proxy, these
papers take γ0 to be the familiar (conditional) CAPM risk adjustment and (1 − θ)γ(β) as
an additional adjustment where γ is now measured using a market return.6 In this paper
we instead follow Hansen and Singleton (1983), Restoy and Weil (1998), Bansal and Yaron
(2004) and others by focus on consumption dynamics. Continuation values are thus a central
ingredient in our analysis.

3.4 Intertemporal substitution (ρ 6= 1)

While ρ = 1 is a convenient benchmark, we are also interested in departures from this
specification. To assess these departures, we consider an expansion for the continuation
value around the point ρ = 1. Our aim is to compute a derivative Dv1

t to use in a first-order
approximation:

vt ≈ v1
t + (ρ− 1)Dv1

t

where V 1
t is the continuation value for an economy in which ρ = 1 and v1

t = logV 1
t − ct. In

appendix A, we derive the following recursion for the derivative:

Dv1
t = −(1− β)(v1

t )
2

2β
+ βẼ(Dv1

t+1|Ft)

where Ẽ is the distorted expectation operator associated with the density

(
V 1

t+1

)1−θ

E
[(

V 1
t+1

)1−θ |Ft

] .

For the log-normal model of consumption, this distorted expectation appends a mean to the
shock vector wt+1. The distorted distribution of wt+1 remains normal, but instead of mean

6Campbell and Vuolteenaho (2003) refer to this second term as the bad β term.
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zero, it has a risk adjusted mean of (1 − θ)γ(β). The derivative Dv1
t is negative because it

is the (distorted) expectation of the sum of negative random variables.
When ρ is different from one, the wealth-consumption ratio is not constant. A first-order

expansion of the continuation value implies a second-order expansion of the consumption-
wealth ratio. This can be seen directly from (7):

log Wt − log Ct = − log(1− β) + (1− ρ)
[
v1

t + (ρ− 1)Dv1
t

]
= − log(1− β)− (ρ− 1)v1

t − (ρ− 1)2Dv1
t .

The term v1
t is very similar (but not identical to) the term typically used when taking log-

linear approximations.7 Recall that this term is the expected discounted value of consump-
tion growth with an additive term constant term that adjusts for variability. In the first-order
approximation of the wealth-consumption ratio, v1

t shows how the wealth-consumption ratio
is altered with the intertemporal substitution parameter ρ.

The first-order term captures the well known property that when consumption growth
rates are predictable, this predictability should be reflected in the consumption wealth ra-
tio. Forecasts that a geometric average of future consumption will be higher than current
consumption imply a higher wealth-consumption ratio when ρ exceeds one and a lower one
ρ is less than one. This is evident because the immediate response of v1

t to a shock wt+1

is given by [γ(β) − γ0]wt+1, which is the difference between the discounted response and
the instantaneous response. In contrast, the risk parameter θ alters the constant term in
v1

t . This implication of intertemporal substitution is familiar from previous literature (e.g.
see Campbell (1996) and Restoy and Weil (1998)). By construction, the second-order term
adjusts the wealth consumption ratio in a manner that is symmetric about ρ = 1. When ρ
deviates from one, this second-order correction is positive.

The corresponding expansion for the logarithm of the stochastic discount factor is:

st+1,t ≈ s1
t+1,t + (ρ− 1)Ds1

t+1,t

where

Ds1
t+1,t = v1

t+1 −
1

β
v1

t + (1− θ)
[
Dv1

t+1 − Ẽ
(
Dv1

t+1|Ft

)]
.

Recall that in Example 3.1, ct+1−ct has conditional mean: µc+Ucxt and a shock contribu-
tion: γ0wt+1. Using the parameterization, the logarithm of the continuation value/consumption
ratio is:

v1
t+1 = Uvxt+1 + µv

= UvHwt+1 + UvGxt + µv.

In appendix A, we show that

Dv1
t+1 = −1

2
xt+1

′Υdvxt+1 + Udvxt+1 + µdv

7In log-linear approximation the discount rate in this approximation is linked to the mean of the wealth
consumption ratio. In the ρ expansion, the subjective rate of discount is used instead.
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where formulas for Υdv, Udv and µdv are given in appendix A.
We could use this expansion to produce approximations to equilibrium prices, in partic-

ular the implied risk neutral prices. In the example economy the first-order approximation
of the stochastic discount factor implies that the risk neutral distribution for wt+1 remains
normal but with an enhanced covariance matrix and an alternative mean. In a continuous-
time approximation, only the mean adjustment is present. The first-order expansion of the
altered mean can be expressed as:

−ργ(0) + (ρ− θ)γ(β) + (ρ− 1)(1− θ)(Udv −H ′ΥdvGxt)].

The term −ργ(0) is familiar from the work of Hansen and Singleton (1983) and the term
(ρ− θ)γ(β) is the approximate adjustment for recursive utility. The third term (ρ− 1)(1−
θ)(Udv −H ′ΥdvGxt) is new relative to the more typical log-linear approximation. It is time
varying when ρ and θ are distinct from unity and consumption growth rates are predictable.
The variation is present even though the consumption process in the example economy is
homoskedastic (in logarithms). For the estimated laws of motion we consider, this source of
variation is small.

Our interest in sensitivity to preference parameters extends beyond one-period risk ad-
justments. We will use this first-order expansion in the stochastic discount factor to compute
derivatives of the logarithms of security prices with positive payoffs at different horizons in-
cluding ones far in to the future.

4 Shocks and Vector Autoregressions

As in much of the empirical literature in macroeconomics, we use vector autoregressive
(VAR) models to identify interesting aggregate shocks and estimate γ(z). We consider a
specification of the VAR that is rich enough to allow experimentation with different long-
run assumptions and different variables that may be important in identifying the long-run
consequences of macroeconomic shocks.

In our initial model we let consumption be the first element of yt and corporate earnings
be the second element:

yt =

[
ct

et

]
.

This vector is presumed evolve as a VAR of order `. In the results reported subsequently,
` = 5. The least restrictive specification we consider is:

A0yt + A1yt−1 + A2yt−2 + ... + A`yt−` + B0 = wt , (9)

The vector B0 two-dimensional, and similarly the square matrices Aj, j = 1, 2, ..., ` are two
by two. The shock vector wt has mean zero and covariance matrix I. We normalize A0 to
be lower triangular with positive entries on the diagonals. Form:

A(z)
.
= A0 + A1z + A2z

2 + ... + A`z
`.
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We are interested in a specification in which A(z) is nonsingular for |z| < 1. Given this
model, the discounted response of consumption to shocks is given by:

γ(β) = (1− β)ucA(β)−1

where uc is a column vector with a one in the first position and a zero in the second entry.
For our measure of aggregate consumption we use aggregate consumption of nondurables

and services taken from the National Income and Product Accounts. This measure is quar-
terly from 1947 Q1 to 2002 Q4, is in real terms and is seasonally adjusted. Our inclusion of
corporate earnings in the VAR is motivated by the work of Lettau and Ludvigson (2001) and
Santos and Veronesi (2001). The second time series is mean to capture aggregate exposure
to stock market cash flows. It is used as a predictor of consumption and as an additional
source of maroeconomic risk. We measure corporate earnings from NIPA and convert this
series to real terms using the implicit price deflator for nondurables and services.

Following Hansen, Heaton, and Li (2005), we consider two specifications of the evolution
of yt. In one case the model is estimated without additional restrictions, and in the other
we restrict the matrix A(1) to have rank one:

A(1) = α
[
1 −1

]
.

where the column vector α is freely estimated. This parameterization imposes two restric-
tions on the A(1) matrix. We refer to the first specification as the without cointegration
model and second as the with cointegration model.

The second system imposes a unit root in consumption and earnings, but restricts these
series to grow together. In this system both series respond in the same way to shocks in
the long run. Specifically, the limiting response of consumption and earnings to a shock
at date 0 is the same. Since the cointegration relation we consider is prespecfied, the with
cointegration model can be estimated as a vector autoregression in the first-difference of the
log consumption and the difference between the log earnings and log consumption.

Our use of a second time series is to identify additional sources of long-run risk beyond just
a single consumption innovation. Whereas Bansal and Yaron (2004) consider multivariate
specifications of consumption risk, they seek to infer this risk from a single aggregate time
series on consumption or aggregate dividends. With flexible dynamics, such a model is not
well identified from time series evidence. On the other hand, while our shock identification
allows for flexible dynamics, it requires that we specify a priori the important sources of
macroeconomic risk.

In our analysis, we will not be concerned with the usual shock identification familiar from
the literature on structural VAR’s. This literature assigns structural labels to the underlying
shocks and imposes a priori restrictions to make this assignment. While we have restricted C
to be lower triangular, this is just a normalization. This restriction leads to the identification
of two shocks, but other shock configurations with an identity as a covariance matrix can be
constructed by taking linear combinations of the initial two shocks we identify. Sometimes
we will construct a temporary shock, a linear combination of shocks that has no long run
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impact on consumption and corporate earnings, and a permanent shock, a shock that has the
same long-run impact on consumption and earnings. The permanent shock is uncorrelated
with the temporary shock. This construction is much in the same spirit as Blanchard and
Quah (1989). What primarily interests us, however, is the intertemporal composition of
consumption risk and not the precise labels attached to individual shocks.

We report impulse responses for estimates of the VAR with and without the cointegra-
tion restriction in figure 1. When cointegration is imposed, corporate earnings relative to
consumption identifies an important long-run response to both shocks. The long-run impact
of the first consumption shock is twice that of the impulse on impact. While the second
earnings shock is normalized to have no immediate impact on consumption, its long-run
impact is sizeable. We demonstrated in the recursive utility model, that the geometrically
weighted average response of consumption to the underlying shocks is a key ingredient in the
stochastic discount factor. As the subjective discount rate converges to zero, this average
coincides with the limiting consumption response.

Notice from the impulse responses in figure 1, that when the cointegration restriction is
not imposed, the estimated long-run consumption responses are substantially smaller. The
imposition of the cointegration restriction is critical to locating an important low frequency
component in consumption. Moreover, in the absence of this restriction, the overall feedback
from earnings shocks to consumption is substantially weakened. The earnings shocks have
little impact on consumption for the no cointegration specification.

Using the cointegration specification, we explore the statistical accuracy of the estimated
responses. Following suggestions of Sims and Zha (1999) and Zha (1999), we impose Box-
Tiao priors on the coefficients of each equation and simulate histograms for the parameter
estimates. This provides approximation for Bayesian posteriors with a relatively diffuse (and
improper) prior distribution. These “priors” are chosen for convenience, but they give us a
simple way for us to depict the sampling uncertainty associated with the estimates.

In the model of Hansen and Singleton (1983), it is the immediate innovation in con-
sumption in consumption that matters for pricing one-period securities. Figure 2 gives a
histogram for the standard deviation of this estimate. In other words it gives the histogram
for the estimate of the (1, 1) entry of A0.

For comparison we also report the histogram for a long-run response using the permanent-
transitory decomposition just described. Figure 2 also gives a histogram for the long-run
consumption response to a long-run shock. The permanent shock is normalized to have unit
standard deviation, so that we can compare magnitudes across the long-run and short run
responses.

As might be expected, the short run response estimate is much more accurate than
the long-run response. Notice that the horizontal scales of histogram differ by a factor of
ten. In particular, while the long-run response is centered at a higher value and it also
has a substantial right tail. Consistent with the estimated impulse response functions, the
median long-run response is about double that of the short-term response. In addition
nontrivial probabilities are given to substantially larger responses.8 Thus from the standpoint

8The accuracy comparison could be anticipated in part from the literature on estimating linear time series

17



Impulse Response of Consumption and Earnings
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Figure 1: The impulse responses without imposing cointegration were constructed from a
bivariate VAR with entries ct, et. These responses are given by the dashed lines −−−. Solid
lines are used to depict the impulse responses estimated from a cointegrated system. The
impulse response functions are computed from a VAR with ct−ct−1 and ct−et as time series
components.
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of sampling accuracy, the long-run response could be even more than double that of the
immediate consumption response. Because discounted future consumption enters the pricing
model this low-frequency component of consumption is potentially important. For example,
Bansal and Yaron (2004) argue that this component of the evolution of consumption aids
our understanding of the equity premium.

The cointegrated specification with a known cointegrating coefficient imposes a restriction
on the VAR. To explore the statistical plausibility of this restriction, we free up the cointe-
gration relation by allowing consumption and earnings to have different long-run responses.
To assess statistical accuracy we simulate the posterior distribution for the cointegrating
coefficient imposing a Box-Tiao prior for each VAR conditioned on the cointegrating coeffi-
cient. The resulting histogram is depicted in figure 3. For sake of computation, we used a
uniform prior over the interval [−2, 2] for the cointegrating coefficient. This figures suggests
that the balanced growth coefficient of unity is plausible.9

5 Long-Run Cash Flow Risk

We have seen evidence for an important long-run component in consumption when combined
with the preference specification of section 3.1. We now investigate how growth rate risk in
cash flows is encoded in asset prices. Specifically, we consider when riskiness about long-run
cash flow growth can have an important contribution to current value.

To explore this issue first consider a stationary Markov specification for {xt}, a process
used to depict the underlying valuation. The logarithm of consumption evolves according
to:

ct+1 − ct = µc(xt) + σc(xt)wt+1.

This model nests the specifications we have considered so far as special cases.
In what follows we consider cash flows that may not grow proportionately with consump-

tion as in Campbell and Cochrane (1999), Bansal, Dittmar, and Lundblad (2005), Lettau,
Ludvigson, and Wachter (2004), and others. For example, the sorting method we use in
constructing some of our portfolios can induce permanent differences in dividend growth.
For this reason we allow cash flows or dividends to risky securities to be levered claims on
consumption in the long run. In our first specification of cash flows we therefore consider,

dt+1 − dt = µd(xt) + σd(xt)wt+1.

where dt is the logarithm of the cash flow.

models using a finite autoregressive approximation to an infinite order model (see Berk (1974)). The on
impact response is estimated at the parametric rate, but the long-run response is estimated at a considerably
slower rate that depends on how the approximating lag length increases with sample size. Our histograms do
not confront the specification uncertainty associated with approximating an infinite order autoregressions,
however.

9The model with cointegration imposes two restrictions on the matrix A(1). Twice the likelihood ratio
for the two models is 5.9. The Bayesian information or Schwarz criterion selects the restricted model.
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Approximate Posterior Distributions for Responses
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Figure 2: The top panel gives the approximate posterior for the immediate response to
consumption and the bottom panel the approximate posterior for the long-run response
of consumption to the permanent shock. The histograms have sixty bins with an average
bin height of unity. They were constructed using using Box-Tiao priors for each equation.
Vertical axes are constructed so that on average the histogram height is unity.
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Approximate Probabilities for the Cointegrating Coefficient
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Figure 3: Box-Tiao priors are imposed on the regression coefficients and innovation vari-
ances conditioned on the cointegrating coefficient. Posterior probabilities are computed by
simulating from a Markov chain constructed from the conditional likelihood function.

21



In what follows we will focus exclusively on log linear specifications, but the apparatus
we describe allows for nonlinearities as well.

5.1 A useful time series decomposition

Prior to characterizing the value contribution of long-run cash flow risk, we employ a useful
martingale decomposition of processes that display stochastic growth. Following example
3.1, let the Markov process follows a stationary first-order vector autoregression with mean
zero. The joint dynamics of consumption and dividends are given by:

ct+1 − ct = µc + Ucxt + γ0wt+1

dt+1 − dt = µd + Udxt + ι0wt+1.

Alternatively, we may specify the process in moving-average form:

ct+1 − ct = µc + γ(L)wt+1

dt+1 − dt = µd + ι(L)wt+1.

where

ι(z) =
∞∑

j=0

ιjz
j

Martingale approximation of the stationary increment processes for log consumption and
log dividends formally depicts the target time series as the sum of a martingale and the
first difference of a stationary process. It is commonly used in establishing central limit
approximations (e.g. see Hall and Heyde (1980)), and it is not limited to linear processes
(e.g. see Hansen and Scheinkman (1995) for a nonlinear Markov version.) For scalar linear
time series, it coincides with the decomposition of Beveridge and Nelson, but it is applicable
much more generally. In the case of consumption, this decomposition is given by:

ct+1 − ct = µc + γ(1)wt+1 + U∗
c xt+1 − U∗

c xt

where

γ(1) = [Uc(I −G)−1H + γ0] =
∞∑

j=0

γj

and
U∗

c
.
= −Uc(I −G)−1.

Then ct has a growth component µct and a martingale component with increment: γ(1)wt.
The vector γ(1) is sum of the impulse response vectors of consumption growth rates to
the shocks. Equivalently, it is the long-run response of consumption to these shocks. The
remaining component of ct− ct−1 is the first difference of stationary process, or equivalently
it is a stationary component of log consumption.
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Similarly, we write

dt+1 − dt = µd + ι(1)wt+1 + U∗
dxt+1 − U∗

dxt (10)

Thus dt has a growth rate µd and a martingale component with increment: ι(1)wt. The
vector ι(1) is the long run response vector for log dividends. As an example, consumption
and dividends are cointegrated when

ι(1) = λγ(1), µd = λµc

for some λ. As we will see, it is µdt and the martingale increments that are the cash flow
inputs into the long run contribution to value. The long-run contribution does not depend
on the stationary component and hence is invariant to U∗

d .
So far, we have considered a cash flow process with log-linear dynamics. Suppose instead

we consider a share model as in Santos and Veronesi (2001). The discrete-time version of
such a model can be depicted as:

Dt = CtΨ(xt)

where Ψ(xt) is restricted to be between zero and one and gives the dividend share of aggregate
consumption. Thus

dt − dt−1 = ct − ct−1 + log Ψ(xt)− log Ψ(xt−1)

By construction this share model assumes that log consumption and log dividends share the
same stochastic growth, so that the long-run dividend risk is the same as that of consumption.
The counterpart to ι(1) is the long-run consumption response γ(1). While physical claims to
resources may satisfy balanced growth restrictions, financial claims of the type we investigate
need not. Share models are not attractive models of the cash flows we consider in the
next section unless the share process is allowed to have a very pronounced low frequency
component.

5.2 Operator Valuation

We study the long-run effect of cash flow risk on pricing using valuation operators. These
operators are the counterparts to the matrices constructed in section 2. We are required
to use an operator formulation to exploit the mathematical convenience of the continuous
state Markov process implied by the VAR statistical model of section 4. There we found
that important elements of the state variable are current and lagged values of consumption
and corporate earnings and that these state variables identified a low-frequency component
of consumption. To capture this component of consumption would require a very large
number of states in a discrete approximation. The VAR specification is also convenient as it
allows us to consider alternative statistical assumptions in a simple way. To accommodate
an environment in which the states are continuous, the operators are constructed instead
using integrals. We study the behavior of these valuation operators using the counterpart
to the eigenvalue methods described in section 2.
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The counterpart to the matrix P used in section 2 is the one-period valuation operator
given by:

Pψ(x) = E (exp [st+1,t + ζ + πwt+1] ψ(xt+1)|xt = x) .

As before we call this a valuation operator because it depends on the value of π and ζ
which account for the long-run components of cash flows. Formally, we view this operator
as mapping functions of the Markov state into functions of the Markov state. In particular,
it is well defined for functions that are bounded functions of the Markov state, but it is well
defined for other functions as well. This operator takes a payoff at date t + 1 of the form:

Dt+1 = exp

(
(t + 1)ζ + π

t+1∑
τ=1

wτ

)
ψ(xt+1)D0, (11)

and maps it into a price today scaled by Dt. Typically D0 is initialized to be positive. Since
payoffs and prices are scaled by a growth factor, the valuation operator depends on the choice
of π and ζ used in the scaling. The log-linear specification of dividend growth given in (10)
is a special case of this model in which π = ι(1), ζ = µd, and ψ(xt) = exp(U∗

dxt).
10

Multi-period prices can be inferred from this one-period pricing operator through itera-
tion. The value of a date t + j cash flow (11) is given by:

Dt

[Pjψ(xt)
]
.

The notation Pj denotes the application of the one-period valuation operator j times, and
it is the counterpart to raising a matrix to the j power.

If we take this cash flow to be a dividend process, the date t price-dividend ratio is:

Pt

Dt

=

∑∞
j=1Pjψ(xt)

ψ(xt)
(12)

provided that ψ(xt) is strictly positive. The term

Pjψ(xt)

ψ(xt)

is the contribution of the date t + j cash flow to the price-dividend ratio, and the price-
dividend ratio adds over these objects. Computing these individual terms gives a value
decomposition of the price-dividend ratio by time horizon.

Since we allow for the growth rates in the cash flows to vary over time, we shall also
define operators that we use to measure these rates and the limiting growth behavior. Let

Gψ(x) = E [exp (ζ + πwt+1) ψ(xt+1)|xt = x] .

By iterating on this growth operator, we can study expected cash flow growth over multi-
period horizons. In particular, the expected value of the cash flow (11) is:

Dt

[Gjψ(xt)
]
.

10The operator formulation allows ψ to be negative with positive probability and thus allows for the study
of cash flows that are sometimes negative.
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5.3 Limiting Behavior

As in section 2, we study the limiting behavior by constructing positive eigenfunctions.
Consider first the solution, φ, to:

−ν = sup
ψ>0

inf
x

(logPψ − log ψ) .

The solution equalizes the objective across states at −ν. The objective is the logarithm of
the value payoff ratio, and problem is to guarantee a high value of this objective across all
states. Thus φ satisfies the equation:

Pφ = exp(−ν)φ,

and is only well defined up to scale.
Recall that the left eigenvector of a matrix is the right eigenvector of its transpose. Here

ϕ is the eigenfunction of the adjoint of the operator P where the adjoint is the operator
equivalent of a transpose. As shown by Hansen and Scheinkman (2005), whenever E (ψϕ)
and E (ϕφ) are well defined and finite:

lim
j→∞

exp(νj)Pjψ(x) =
E(ϕψ)

E(ϕφ)
φ(x). (13)

Thus when E(ϕψ) > 0,

lim
j→∞

log [Pjψ(x)]

j
= −ν.

This calculation gives us an asymptotic decay rate that depends on both cash flow growth
through the specification of π and ζ, on the economic value associated with that growth,
but not the particular function ψ that dictates the transient contribution to cash flows. The
eigenfunction φ is dominant as it gives the limiting state dependence of the values as reflected
in formula (13). Thus the pair (ν, φ) measures how long-run prospects about dividends
contribute to value. The ψ contribution is transient and does not alter the asymptotic decay
rate or the appropriately scaled limiting value.

The asymptotic cash-flow growth is characterized by an analogous eigenfunction-eigenvalue
pair. A straightforward calculation shows that the dominant eigenfunction of G is one and
that

Gψ = exp

(
ζ +

|π|2
2

)
ψ

for ψ = 1.11 Thus

ε = ζ +
|π|2
2

.

is the implied asymptotic rate of growth for the cash flow.
In what follows we will motivate the study of ε + ν. This sum depends on π but not ζ. It

also depends on the preference parameters δ, θ and ρ through the stochastic discount factor
st+1.

11When the martingale approximation for the cash flow has heteroskedastic increments, this calculation
ceases to have a trivial solution.
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5.4 Securities constructed from dominant eigenfunctions

We aim to approximate dividend price ratios and returns to a security with dividends pay-
ments only far off into the future.

First we use the dominant eigenfunction to construct a valuation process and the corre-
sponding return. A valuation process {Jt : t = 1, 2, ...} is one for which the date t price of
the security with liquidation value Jt+1 is Jt. We can construct such securities by supposing
that dividends are continually reinvested. Form:

Jt+1 = exp

[
(ν + ζ)(t + 1) + π

t+1∑
τ=1

wj

]
φ(xt+1).

Since φ is a positive eigenfunction, the date t value of the payoff Jt+1 is indeed Jt, verifying
that Jt+1 is indeed a valuation process. Notice that the riskiness of the one period return
depends on π and the response of log φ to the underlying shocks. In our calculations, π = ι(1)
which is extracted as the permanent component to cash flows. The implied return includes
an additional value contribution captured by the logarithm of the dominant eigenfunction,
log ϕ.

The k period return is:

Rk
t+k =

Jt+k

Jt

= exp

[
(ζ + ν)k + π

k∑
τ=1

wτ+t

]
φ(xt+k)

φ(xt)
.

Take expectations and logarithms:

lim
k→∞

1

k
log E

(
Rk

t+k|Ft

)
= ν + lim

k→∞
1

k
log Gkφ(xt) = ν + ε (14)

provided that Eφκ is finite where κ is the eigenfunction of the adjoint of the operator G.
Consider next a security with a dividend process of the from (11) using the eigenfunction

φ in place of ψ. This security has a constant price/dividend ratio. Using the eigenvalue
property and formula (12), the price-dividend ratio is

exp (−ν)

1− exp (−ν)
, (15)

which does not vary across states. As in the Gordon growth model, the factor exp (−ν)
includes both a pure discount factor (adjusted for risk) and a dividend growth factor. The
implied discount rate is ν + ε since the asymptotic dividend growth factor for dividends with
long-run risk is: exp(ε). The one-period return on this constructed equity is the same as
that of the valuation process described previously.

These constructed securities are related to the returns to holding equity with the initial
dividend processes stripped out. Instead we consider the return on equity with the original
cash flow (11), but with the initial payoff date far into the future. While this cash flow
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depends on the choice of ϕ, the initial payoff date is well into the future and the dependence
on ϕ is small. Formally, from formula (13), the date t valuation of payoff of the original cash
flow (11) j-periods into the future is approximately

exp(−νj) exp

[
ζ(t) + π

t∑
τ=1

wτ

]
E[ϕ(xt)ψ(xt)]

E[ϕ(xt)φ(xt)]
φ(xt).

for large j. Adding over horizons j ≥ k for some large k gives

P̂ k
t =

exp(−νk)

1− exp(−ν)

E[ϕ(xt)ψ(xt)]

E[ϕ(xt)φ(xt)]
exp

[
ζ(t) + π

t∑
τ=1

wτ

]
φ(xt)

The approximate one period return on this security is:

P̂ k−1
t+1

P̂ k
t

= exp(ν) exp (ζ + πwt+1)
φ(xt+1)

φ(xt)
=

Jt+1

Jt

since k exceeds one. This is the approximate return to holding an equity for which all but the
components far into the future are excluded. Not surprisingly, it is the long-run martingale
component of the cash flow that dictates what component of the cash is valued when the
payoff is far into the future. The dominant eigenfunction adds an addition source of return
risk necessary to understand how cash flow risk is transmitted into return risk far into the
future. In what follows we will refer to the constructed return Jt+1

Jt
as a valuation return

associated with a cash flow with risk vector π.
Characterizing the dependence of ν + ε on π gives a long-run risk return relation. The

vector π gives the cash flow weights on the underlying shocks and ν + ε gives the implied
expected rate of return. By setting π = 0, we obtain a benchmark return that this the long-
run counterpart to the riskfree return. The resulting return is the maximal growth return
of Bansal and Lehmann (1997). Alvarez and Jermann (2001) study of the holding period
returns to long-horizon discount bonds. The return to a long horizon bond is:

Pk−1ψ(xt+1)

Pkψ(xt)

for ψ = 1 and P constructed using π = 0 and ζ = 0. Thus the approximate one period
return is:

exp(ν)
φ(xt+1)

φ(xt)

constructed using the π = 0 and ζ = 0 for the associated dominant eigenvalue and function.
In this case, ε is zero by construction.
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5.5 Long-Run Risk Return Tradeoff

When the intertemporal substitution parameter is unity, we can provide a complete charac-
terization of the long-run risk-return tradeoff and how this tradeoff depends on parameter
values.

Theorem 5.1. Suppose that ρ = 1 and consumption follows the first-order dynamics given
in example (3.1).

1. The dominant eigenfunction φ is a scale multiple of exp(−ωx) where

ω
.
= Uc(I −G)−1.

2. The dominant eigenvalue is exp(−ν) where

ν = µc − ζ + δ − |π − γ(1)|2
2

+ (θ − 1)γ(β) · [π − γ(1)].

3. The dominant eigenfunction, ϕ, of the adjoint of P is a scale multiple of exp(−ω∗x)
where the formula for ω∗ is given in appendix B.12

4. The expected valuation rate of return is:

ε + ν = ς∗ + π∗ · π
where

π∗ .
= (θ − 1)γ(β) + γ(1)

ς∗ .
= µc + δ + (1− θ)γ(1) · γ(β)− |γ(1)|2

2
.

Proof. See appendix B.

Recall that there are two sources of risk in the implied valuation returns: a long-run
cash flow risk πwt+1 and an additional valuation risk −ωHwt+1 contributed by the dominant
eigenfunction. For the ρ = 1 economy, the dominant eigenfunction does not depend on the
risk aversion parameter θ or on the vector π that weights the shocks; but this result is not
true in general.

Since ω does not depend on π in this case, we may view π∗ as the vector of valuation
risk prices. As in the pricing of one-period securities, there is a recursive utility contribu-
tion constructed from the discounted consumption response vector γ(β). There is a second
contribution that replaces the single period consumption risk vector γ0 with its long run
counterpart γ(1). As the subjective discount factor β tends to unity, the two components
become proportional.

12Analogously the eigenfunction, κ, of the adjoint of G is also log-linear in x. This guarantees that the
limit in (14) exists.
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When ρ 6= 1, we expand the dominant eignenvalue of the valuation operator around
ρ = 1. This allows us to characterize the long-run risk return tradeoff for different values of
ρ. The expansion we use is given by:

ν = ν1 + (ρ− 1)
dν

dρ
|ρ=1

where ν1 is the dominant eigenvalue when ρ = 1. In appendix B we show how to evaluate
the derivative of ν with respect to ρ.

5.6 Long Horizon Returns

An alternative approach to long-run risk is based entirely on returns, and not cash flows.
Consider a one-period return process {Rt} and construct the reference growth process by
compounding returns:

D∗
t =

t∏
j=1

Rj (16)

Thus D∗
t is the time t payment when dividends are continually reinvested in the security

and the security is sold at time t. The logarithm, ε, of the dominant eigenvalue for the
corresponding growth operator G gives the long-run expected rate of return. While we are
primarily interested in cash flow valuation, we will also use this return construction for
comparison.13

6 Long-Run Valuation Risk

In this section we report estimates of long-run dividend growth and the risk associated with
that growth.

6.1 Dividend Dynamics

We identify dividend dynamics and, in particular, the martingale component ι(1) using
VAR methods. Consider a VAR with three variables: consumption, corporate earnings
and dividends (all in logarithms). Consumption and corporate earnings are modelled as
before in a cointegrated system. We use the cointegrated system because it identifies a long-
run consumption risk component that is distinct from the one-step-ahead forecast error of
consumption. In addition to consumption and earnings, we include in sequence the dividend
series from each of the five book-to-market portfolios and from the market. Thus the same
two shocks as were identified previously remain shocks in this system because consumption

13If we construct the valuation operator P using a gross return in place of the dividends, then P should
be a distorted conditional expectation operator. Its dominant eigenfunction is unity as is the corresponding
eigenvalue.
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and corporate earnings remain an autonomous system. An additional shock is required to
account for the remaining variation in dividends beyond what is explained by consumption
and corporate earnings.

Formally, we append a dividend equation

A∗
0y
∗
t + A∗

1yt−1 + A∗
2yt−2 + ... + A∗

`yt−` + B∗
0 = w∗

t , (17)

to equation system (9). In this equation the vector of inputs is

y∗t
.
=

[
yt

dt

]
=




ct

et

dt




and the shock w∗
t is scalar with mean zero and unit variance. This shock is uncorrelated

with the shock wt that enters (9). The third entry of A∗
0 is normalized to be positive. We

refer to (17) as the dividend equation, and the shock w∗
t as the dividend shock. As in our

previous estimation, we set ` = 5. W presume that this additional shock has a permanent
impact on dividends by imposing the linear restriction:

A∗(1) =
[
α∗ −α∗ 0

]
.

In the next section we will explore sensitivity to alternative specifications of long-run stochas-
tic growth in the cash flows.

A stationary counterpart to this log level specification can be written in terms of the
ct − ct−1, et − ct, dt − dt−1. We estimated the VAR using these transformed variables with
four lags of the growth rate variables and five lags of the logarithmic differences between
consumption and earnings.

6.2 Long-run Risk in Aggregate Securities

Next we use the VAR estimates to measure long-run risk components of cash flows. The
implied sample estimates of π and ζ for each of the cash flows are inputs into these calcula-
tions.

In table 1 we report long-run expected rates of return using the dividends from the
CRSP value weighted equity. We explore sensitivity as we alter θ, and display derivatives
with respect to the intertemporal substitution parameter ρ. We compare expected rates
of return to those of implied by consumption and those implied by a long-run riskless rate
of return. This latter return is used as the reference point for computing expected excess
returns and it is the long-run riskless return considered by Alvarez and Jermann (2001).

As is evident from this table, the implied differences in expected returns across securities
are small even when θ is as large twenty. The derivatives of the returns with respect to ρ
are large while the derivatives of the excess returns are small. According to the derivatives,
increasing ρ by ε adds over three times ε percentage points to the expected rates of returns.
While larger values of ρ increase long-run riskless return rate, this increase can be offset
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Valuation Returns for Aggregates

Excess Return Excess Return
Portfolio Return Return Derivative Derivative

θ = 1

market 6.60 .06 3.52 .00
consumption 6.58 .05 3.51 .00

long bond 6.54 0 3.51 0

θ = 5

market 6.69 .30 3.43 -.01
consumption 6.58 .19 3.43 -.01

long bond 6.39 0 3.44 0

θ = 20

market 7.00 1.19 3.09 -.07
consumption 6.58 .77 3.13 -.04

long bond 5.81 0 3.17 0

Table 1: The excess returns are measured relative to the return on the long horizon discount
bond. The derivative entries in columns four and five are computed with respect to ρ and
evaluated at ρ = 1.

by simultaneously reducing δ.14 The expected excess returns to valuation are essentially
proportional to θ. Quadrupling θ (θ = 5 to θ = 20), approximately quadruples the numbers
in the “Excess Return” column. This approximation is to be expected. The proportionality
would be exact if γ(β) = γ(1), and we have chosen our discount factor to be close to unity.
Overall, the long-run rate of return heterogeneity is small, even when risk aversion parameter
is set to a large number.

6.3 Book to Market Portfolios

Next we use five portfolios constructed based on a measure of book equity to market eq-
uity, and characterize the time series properties of the dividend series as it covaries with
consumption and earnings. We follow Fama and French (1993) and construct portfolios of
returns by sorting stocks according to their book-to-market values. We use a coarser sort

14Of course there is a limit to this reduction, when δ is restricted to be positive.
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Properties of Portfolios Sorted by Book-to-Market

Portfolio

1 2 3 4 5 Market

Avg. Return (%) 7.91 8.32 9.86 10.61 12.69 8.42

Long-Run Return (%) 8.16 7.97 9.96 10.27 12.15 8.40

Avg. B/M 0.32 0.62 0.84 1.12 2.00 0.79

Avg. P/D 49.8 33.3 27.4 24.3 25.5 33.6

Table 2: Data are quarterly from 1947 Q1 to 2002 Q4 for returns and annual from 1947 to
2001 for B/M ratios. Returns are converted to real units using the implicit price deflator
for nondurable and services consumption. Average returns are converted to annual units
using the natural logarithm of quarterly gross returns multiplied by 4. “Avg. B/M” for each
portfolio is the average portfolio book-to-market over the period computed from COMPU-
STAT. “Avg. P/D” gives the average price-dividend for each portfolio where dividends are
in annual units.

into 5 portfolios to make our analysis tractable.
Summary statistics for these portfolios are reported in table 2. The row labeled “Avg.

Return” gives the logarithm of the expected quarterly gross return to holding each security
where the expectation is multiplied by four to produce results in annual units. The expected
returns are constructed by adding a third equation for the logarithm of gross returns to the
VAR for consumption and earnings of section 4. We impose the restriction that consumption
and earnings are not Granger Caused by the returns and we estimated a separate VAR for
each portfolio. One period expected gross returns are calculated conditional on being at the
mean of the state variable implied by the VAR. In the row labeled “Long-Run Return,” we
also report the logarithm of the dominant eigenvalue of the operator G implied by the VAR
and the compound return process (16). These results are also reported in annual units.

Notice that the portfolios are ordered by average book to market values where portfolio
1 has the lowest book-to-market value and portfolio 5 has the highest. Both one-period and
long-run average returns generally follow this sort. For example, portfolio 1 has much lower
average returns than portfolio 5. It is well known that the differences in these average returns
are not well explained by exposure to contemporaneous covariance with consumption.

In this section we are particularly interested in the behavior of dividends from the con-
structed portfolios. The constructed dividend processes accommodate changes in the classi-
fication of the primitive assets and depend on the relative prices of the new and old asset in
the book-to-market portfolios. Monthly dividend growth for each portfolio are constructed
from the gross returns to holding each portfolio with and without dividends. Using the
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initial price-dividend ratio for the series, these growth rates are used to construct monthly
dividend levels. Dividends on a quarterly basis are constructed as an accumulation of the
monthly dividends during the quarter. Our measure of quarterly dividends in quarter t is
then constructed by taking an average of the logarithm of dividends in quarter t and over
the previous three quarters t−3, t−2 and t−1. This last procedure removes the pronounced
seasonal in dividend payments. Details of this construction are given in Hansen, Heaton,
and Li (2005), which follows the work of Bansal, Dittmar, and Lundblad (2005), and Menzly,
Santos, and Veronesi (2004).

We estimate ι(1) from the dividend regression, and use this as a measure of π. We then
explore the limiting valuation and rates of returns using the eigenvector methods described
previously. Table 3 gives long-run average rates of return for the five book-to-market port-
folios. Again we explore formally sensitivity to the risk aversion parameter θ and report
derivatives with respect to the intertemporal elasticity parameter ρ.

Complementary to many other asset pricing studies, differences in the average rates of
return on long-run valuation securities are small except for large values of the risk aversion
parameter θ, say θ = 20. In contrast to aggregate securities, the implied heterogeneity in
the valuation returns are now substantial, for large values of θ. Again changing θ, alters the
expected excess returns proportionately.

When θ = 20, differences between the valuation returns of portfolios 1 and 5 are similar
to the observed differences reported in table 2. The level of the returns in table 3 are lower
than those in the data, however. These levels could easily be reconciled by a different choice
of the discount factor β.

As with the aggregate returns, derivatives with respect to ρ are similar across securities
so that modest movements in ρ have little impact on the excess long-run returns.

It is of also of interest to study the implied logarithm of the price/dividend ratio decom-
posed and scaled by horizon. These are reported in figure 4. The lower panel of this figure
depicts the dividend growth rate by horizon. The figures are computed assuming that the
Markov state is set to its unconditional mean. The limiting values are inputs into the return
calculations. When θ = 1, the risk adjustments are very small and the value decomposi-
tion is a direct reflection of the dividend growth. Moreover, the values for portfolio one are
dominated by those for portfolio five across all horizons.

It is only with high values of the risk aversion parameter θ that the value decomposition
for the low book to market portfolios eventually exceed those of the high book to market
portfolios as required by the data (see table 2). To see this, recall that the limiting values
of the lines plotted in the upper panels of figure 4 give values −ν corresponding to each
portfolio and θ combination. Relation (15) maps these values of −ν into a corresponding
long run or tail notion of a price-dividend ratio. When θ = 1 the tail price-dividend ratios (in
annual units) for portfolios 1 and 5 are 22.5 and 102.2 respectively. When θ = 20, however,
these values are 45.1 and 21.2, respectively, which matches the data more closely.

Finally, in our calculations it can take many time periods for the valuations to approx-
imate their limiting values. Even fifteen years (sixty quarters) is not be long enough to
approximate well the limit in some cases. Thus the expected rates of return to valuation do
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Valuation Returns for Portfolios

Excess Return Excess Return
Portfolio Return Return Derivative Derivative

θ = 1

1 6.48 -.06 3.51 .00
2 6.55 .01 3.51 .00
3 6.67 .13 3.52 .01
4 6.71 .17 3.52 .01
5 6.78 .22 3.53 .02

θ = 5

1 6.11 -.27 3.45 .01
2 6.42 .03 3.43 .00
3 7.01 .61 3.40 -.04
4 7.18 .79 3.41 -.03
5 7.43 1.03 3.40 -.04

θ = 20

1 4.74 -1.07 3.23 .07
2 5.94 0.13 3.16 .00
3 8.25 2.44 2.97 -.20
4 8.95 3.14 2.98 -.19
5 9.90 4.09 2.92 -.24

.

Table 3: The excess returns are measured relative to the return on a long horizon discount
bond. The derivative entries in columns four and five are computed with respect to ρ and
evaluated at ρ = 1.
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indeed extrapolate the implied consumption/dividend dynamics very far into the future.
The price-dividend decomposition include expected growth and expected return contri-

butions. We form the expected excess rate of return by horizon by computing:

400

τ
[log(Pτ1)− log(Pτψ) + log(Gτψ)].

As τ gets arbitrarily large, the limits converge to the corresponding expected excess return
limits given in tables 1 and 3. Figure 5 shows how these expected excess rates of returns
change with θ and with modest movements in ρ for different values of τ . Consistent with
our characterization of the limit points, small changes in ρ have little impact on this decom-
position. We only consider values of ρ close to unity because the approximation we employ
is local to ρ = 1. While expected rates of return for portfolio five and the market increase
with horizon, those of portfolio one eventually decrease. The portfolio excess rates of return
are more responsive to changes in θ than the market return, consistent with the limiting
calculations in tables 1 and 3.

6.4 Statistical Accuracy

We consider sampling uncertainty in some of inputs used for long run risk. Recall that these
inputs are based in part extrapolation of VAR systems fit to match transition dynamics.
As in the related macroeconomics literature, we expect a substantial degree of sampling
uncertainty. We now quantify how substantial this is for our application.

When ρ = 1, the expected excess returns are approximately equal to:

θγ(1) · π.

We now investigate the statistical accuracy of γ(1) · π for the five portfolio, and for the
difference between portfolios one and five. The vector π is measured using ι(1). In table 4
we report the approximate posterior distribution for γ(1) · π computed using an approach
advocated by Sims and Zha (1999) and Zha (1999) based on Box-Tiao priors. While there is
a considerable amount of statistical uncertainty in these risk measures, there are important
differences the expected excess value returns between portfolios one and five.
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Value and Growth Decompositions for Two Portfolios
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Figure 4: In the top two panels, the curve is computed using θ = 1, the ·· curve assumes
θ = 5, the −. curve assumes θ = 10 and the −− curve assumes that θ = 20.
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Excess Return Decompositions by Horizon
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Figure 5: In the top two panels, the curves impose ρ = 1, the ·· curves impose ρ = .5
and the −. curves impose ρ = 1.5. The curves for ρ 6= 1 were computed using linear
approximation around the point ρ = 1.
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Accuracy of Risk Measures

Portfolio Quantile
.05 .25 .5 .75 .95

1 -.63 -.13 -.05 -.01 .10
2 -.19 -.03 .01 .04 .22
3 .01 .06 .12 .28 1.42
4 .04 .10 .17 .32 1.46
5 .04 .12 .21 .42 1.88

market -.01 .03 .06 .12 .58
5-1 .05 .15 .27 .55 2.41

Table 4: Quantiles were computed by simulating 100,000 times using Box-Tiao priors. The
quantiles were computed using only simulation draws for which the absolute values of the
eigenvalues were all less than .999. The fraction of accepted draws ranged from .986 to .987.
The quantiles were computed using VAR’s that included consumption, corporate earnings
and a single dividend series with one exception. To compute quantiles for the 5 − 1 row,
dividends for both portfolios were included in the VAR.

7 Alternative Models of Cash Flow Growth

Our calculations so far have been based on one model of cash flow growth. We now explore
some alternative specifications used in other research and check for sensitivity. These spec-
ifications continue to capture the fact that the dividends from financial portfolios do not
appear to grow one-to-one with consumption. This has been documented in a variety of dif-
ferent places and is evident in figure 6, where we report the logarithms of portfolio dividends
relative to aggregate consumption.15 Notice that the first three portfolios appear to grow
slower than consumption, and even market dividends display this same pattern. Portfolios
four and five show more pronounced growth than consumption.

7.1 Dividend Dynamics

In the previous section, we identified dividend dynamics and, in particular, the martingale
component ι(1) using VAR methods. We used a VAR with three variables: consumption,
corporate earnings and dividends (all in logarithms). Consumption and earnings were re-
stricted to have the same long-run response to permanent shocks. We now consider two

15In an attempt to construct consumption-dividend ratios that are stationary, Menzly, Santos, and Veronesi
(2004) divide consumption by population but not dividends. While population is not a simple time trend,
its time series trajectory is much smoother than either consumption or dividends.

38



1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−4

−3.5

−3

−2.5

−2
Port. 1
Port. 2
Port. 3

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−4.5

−4

−3.5

−3

−2.5

−2
Port. 4
Port. 5
Market 

Figure 6: Log of Ratios of Portfolio Dividends to Consumption
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alternative specifications of dividend growth to assess sensitivity to model specification.
Both are restrictions on the equation:

A∗
0y
∗
t + A∗

1yt−1 + A∗
2yt−2 + ... + A∗

`yt−` + B∗
0 + B∗

1t = w∗
t ,

where the shock w∗
t is scalar with mean zero and unit variance and uncorrelated with the

shock vector wt that enters (9). The third entry of A∗
0 is normalized to be positive. As in

our previous estimation, we set ` = 5.

7.2 Cointegration

The first specification restricts that the trend coefficient B∗
1 equal zero, and is the model

used by Hansen, Heaton, and Li (2005). Given our interest in measuring long-run risk,
we measure the permanent response of dividends to the permanent shock. While both
consumption and corporate earnings are restricted to respond to permanent shocks in the
same manner, the dividend response is left unconstrained. We let λ∗ denote the ratio of the
long-run dividend response to the long-run consumption response. We measure this for each
of the five portfolios. In this case we allow the matrix:

[
A(1) 0
A∗(1)

]

to have rank two where

A∗(z)
.
=

∑̀
j=0

A∗
jz

j.

The cointegrating vector (1, 1, λ∗) is in the null space of this rank two matrix. For this model,
the vector π is

π = ι(1) = λ∗γ(1) (18)

and ζ = µd = λ∗µc.
The second specification includes a time trend by freely estimating B∗

1 . A model like
this, but without corporate earnings, was used by Bansal, Dittmar, and Lundblad (2005).
We refer to this as the time trend specification. In this model the time trend introduces a
second source of dividend growth. While π is constructed as in model (18), µd = ζ is now
left unrestricted.

The role of specification uncertainty is illustrated in the impulse response figure 7. This
figure features the responses of portfolio one and five to a permanent shock. For each
portfolio, the measured responses obtained for each of the three growth configurations are
quite close up to about three to four years and then they diverge. Both portfolios initially
respond positively to this shock with peak responses occurring in about seven time periods.
The response of portfolio one is much larger in this initial phase. The limiting responses
differ substantially depending on the growth configuration that is imposed in estimation.
The estimated response of portfolio one is eventually negative when time trends are included
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or an additional stochastic growth factor is included. The time trend model leads to lower
limits for both portfolios. It is interesting, however, that the long-run differential responses
between portfolio one and five are approximately the same for the time trend model and the
dividend growth model.16

To better understand the importance of alternative growth configurations, figure 8 plots
both the level of dividends for portfolios one and five and the fitted values implied by the
“aggregate” innovations to consumption and corporate earnings alone. Results are reported
for all three growth configurations. The presence of a deterministic trend in a log levels
specification allows the VAR model to fit the low frequency movements of dividends for
portfolio 1 much better than either of the other two models.17 In contrast the fitted values
are quite similar across growth configurations for portfolio 5.

16Bansal, Dittmar, and Lundblad (2005) use their estimates with a time trend model as inputs into a cross
sectional return regression. While estimation accuracy and specification sensitivity may challenge these
regressions, the consistency of the ranking across methods is arguably good news, as emphasized to us by
Ravi Bansal. As is clear from our previous analysis, we are using the economic model in a more formal way
and in way that departs in a substantial way from running cross-sectional regressions.

17Results for portfolio 2 are very similar to those for portfolio 1.
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Impulse Response Functions for Two Portfolios
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Figure 7: The · · · curve is generated from the level specification for dividends; the —
is generated from the level specification with time trends included; and the -·- curve is
generated from the first difference specification.
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Portfolio Dividends and Fitted Values
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Figure 8: Dashed lines −− display the data. Solid lines are the fitted values based
on consumption shocks alone. Dot-dashed lines −· are fitted values with all shocks set to
zero. Row one gives results for the cointegrated model without time trends, row two for the
cointegrated model with time trends, and row three for the model in which an additional
unit root is imposed on the dividend evolution.
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Up until now, we have taken the linear cointegration model with time trends literally. Is it
realistic to think of these as deterministic time trends in studying the economic components
of long-run risk? We suspect not. While there may be important components to the cash
flows for portfolios 1 and 2 that are very persistent, it seems unlikely that these are literally
deterministic time trends known to investors. Within the statistical model, the time trends
for these portfolios in part offset the negative growth induced by the cointegration. We
suspect that the substantially negative estimates of λ∗ probably are not likely to be the true
limiting measures of how dividends respond to consumption and earnings shocks. While the
long-run risk associated with portfolios 1 and 2 looks very different from that of portfolio
five, a literal interpretation of the resulting cointegrating relation is hard to defend.

There is a potential pitfall in estimation methods that conditioned on initial data points
as we have here. Sims (1991) and Sims (1996) warn against the use of such methods because
the resulting estimates might over fit the the initial time series, ascribing it to a transient
component far from the trend line. As Sims argues,

... that the estimated model implies that future deviations as great as the initial
deviation will be extremely rare.

This impact is evident for portfolio 1 as seen in figure 8. This figure includes trajectories
simulated from the initial conditions alone. When the time trend is included, the deter-
ministic simulation tracks well the actual dividend data for the first few years. There is
sharp upward movement in the initial phase of this deterministic simulation when a time
trend is included in the dividend evolution. The increase is much more muted when time
trends are excluded.18 Did investors have confidence at the beginning of the sample in such
a trajectory? We suspect not. In contrast, this phenomenon is not present in deterministic
simulation for portfolio 5. Instead the deterministic trajectory is very similar across the
three time series models.

In summary, while there is intriguing heterogeneity in the long run cash flow responses
and implied returns, the implied risk measures are sensitive to the growth specification as is
the case in the related macroeconomics literature. Given the observed cash flow growth, it
is important to allow for low frequency departures from a balanced growth restriction. The
simple cointegration model introduces only one free growth parameter for each portfolio,
but results in a modest amount of return heterogeneity. The time trend growth models
impose additional sources of growth. The added flexibility of the time trend specification
may presume too much investor confidence in a deterministic growth component, however.
The dividend growth specification that we used in our previous calculations, while ad hoc,
presumes this additional growth component is stochastic and is a more appealing specification
to us.

18Again portfolio 2 behaves similarly to portfolio 1.
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7.3 Adding Price Information

In the specifications we have considered so far, we have ignored any information for forecast-
ing future consumption that might be contained in asset prices. Our model of asset pricing
implies a strict relationship between cash flow dynamics and prices so that price information
should be redundant. Prices, however, may reveal additional components to the information
set of investor and hence a long-run consumption risk that cannot be identified from cash
flows. For these reasons we consider an alternative specification of the VAR where we include
consumption, corporate earnings, dividends as well as prices.

Parker and Julliard (2004) argue that it is the differential ability of the returns to growth
and value portfolios in forecasting future consumption that is an important feature in the
data. We therefore include dividends and prices for portfolios one and five simultaneously
in this analysis. We continue to impose a unit root in consumption and the restriction that
consumption and corporate earnings are cointegrated. We allow each dividend series to have
its own stochastic growth path, but the prices of each portfolio are assumed to be cointegrated
with their corresponded dividends. Finally, to assess the ability of portfolio prices to forecast
future consumption we relax the assumption that consumption and corporate earnings are
not Granger caused by portfolio cash flows or prices.

Figure 9 reports results for excess returns by horizon as in figure 4. The general character
of the results are not changed. For large values of θ the model predicts substantial differences
between portfolio excess returns at long-horizon. The exact patterns are different when prices
are included, however. For example the excess returns to portfolio one, when θ = 20, are
larger at long horizons. Further there is more sensitivity to the parameter ρ when θ = 20.
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Excess Return Decompositions by Horizon
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Figure 9: In the top two panels, the curves impose ρ = 1, the ·· curves impose ρ = .5
and the −. curves impose ρ = 1.5. The curves for ρ 6= 1 were computed using linear
approximation around the point ρ = 1.
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8 Conclusion

Growth rate variation in consumption or cash flows have important consequences for asset
valuation. In this paper we analyzed formally the valuation implications through the guises
of a commonly used consumption-based benchmark model. We made operational a notion
of long-run valuation risk, and we studied measurement accuracy of the inputs needed to
characterize the implied risk-return tradeoff. The methods on display in this paper produced
a useful formalization of the long-run contribution to value of the stochastic components
of discount factors and cash flows. We used them to isolated features of the economic
environment that have important consequences for long run valuation and heterogeneity
across cash flows.

Important inputs into our calculations are the long-run riskiness of cash flows and con-
sumption. While these are crucial inputs, they are hard to measure in practice. Using
standard methods from linear time series analysis to measure directly long-run variation in
growth rates is a challenging endeavor. Statistical methods typically rely on extrapolating
the time series model to infer how cash flows respond in the long-run to shocks. This ex-
trapolation depends on details of the growth configuration of the model, and in many cases
these details are hard to defend on purely statistical grounds.

The linear models we investigate are likely to be misspecified. For simplicity we closed
down one potentially important channel for long-run risk by abstracting from volatility
changes. These changes can induce an additional source of risk, but also pose additional
statistical challenges of how to model and measure this volatility in a flexible way. While
the direct evidence from consumption data for time varying volatility is modest, the implied
evidence from asset pricing is intriguing.19 Moreover, there is pervasive statistical evidence
for growth rate changes or breaks in trend lines, but this statistical evidence is difficult to
use directly in models of decision-making under uncertainty without some rather specific
ancillary assumptions about investor beliefs. Many of the statistical challenges that plague
econometricians presumably also plague market participants. Naive application of rational
expectations equilibrium concepts may endow investors with too much knowledge about
future growth prospects.

There are two complementary responses to the measurement and modelling conundrum.
One is to resort to the use of highly structured, but easily interpretable, models of long-run
growth variation. The other is to exploit the fact that asset values encode information about
long-run growth. To break this code requires a reliable economic model of the long-run
risk-return relation. While we explored one model-based method for extracting economic
characterizations of this relation, we resorted in part to high risk aversion to produce het-
erogeneity in the dominant valuation components to portfolio cash flows. Unfortunately, as
yet there is not an empirically well grounded, and economically relevant model of asset pric-
ing to use in deducing investors beliefs about the long-run from values of long-lived assets.
While the methods we have proposed aid in our understanding of asset-pricing models, they

19For example, see Lettau and Wachter (2005) for a long-run risk characterization that features the con-
sequences of heteroskedasticity using an ad hoc stochastic discount factor model.
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also expose the important measurement challenges in quantifying the long-run risk-return
tradeoff. Much progress has been made in our understanding of models, but there remain
important challenges in understanding the precise nature of long-run growth rate movements
in the underlying economy.
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A Expansion

We compute the first-order expansion:

vt ≈ v1
t + (ρ− 1)Dv1

t

where v1
t is the continuation value for the case in which ρ = 1. To construct an appropriate

recursion for Dv1
t we construct an approximate recursion by expanding the logarithm and

exponential functions in (4) and including up to second-order terms in Qt. The approximate
recursion is:

vt ≈ β

[
Qt(vt+1 + ct+1 − ct) + (1− ρ)(1− β)

Qt(vt+1 + ct+1 − ct)
2

2

]
.

Then
v1

t = βQt(v
1
t+1 + ct+1 − ct),

which is the ρ = 1 exact recursion and

Dv1
t = −β(1− β)

Qt(v
1
t+1 + ct+1 − ct)

2

2
+ βẼ(Dv1

t+1|Ft)

= −(1− β)(v1
t )

2

2β
+ βẼ(Dv1

t+1|Ft) (19)

where Ẽ is the distorted expectation operator associated with the density

(
V 1

t+1

)1−θ

E
[(

V 1
t+1

)1−θ |Ft

] .

Consider example 3.1. Then

(v1
t )

2 = (Uvxt)
′Uvxt + 2µvUvxt + (µv)

2.

Write:

Dv1
t = −1

2
xt
′Υdvxt + Udvxt + µdv.

From (19),

Υdv =
(1− β)

β
U ′

vUv + βG′ΥdvG

Udv = −(1− β)

β
µvUv − β(1− θ)γ(β)H ′ΥdvG + βUdvG (20)

µdv = −(1− β)

2β
(µv)

2 − β(1− θ)2

2
γ(β)H ′ΥdvHγ(β)′

+β(1− θ)UdvHγ(β)′ − β

2
trace(H ′ΥdvH) + βµdv
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The first equation in (20) is a Sylvester equation and is easily solved. Given Υdv, the solution
for Udv is:

Udv = −(I − βG′)−1

[
1− β

β
µvUv +

β(1− θ)

2
G′ΥdvHγ(β)′

]
,

and given Υdv and Udv the solution for µdv is:

µdv =
− (1−β)

2β
(µv)

2 − β(1−θ)2

2
γ(β)H ′ΥdvHγ(β)′ + β(1− θ)UdvHγ(β)′ − β

2
trace(H ′ΥdvH)

1− β

Finally, consider the first-order expansion of the logarithm of the stochastic discount
factor:

st+1,t ≈ s1
t+1,t + (ρ− 1)Ds1

t+1,t.

Recall that the log discount factor is given by:

st+1,t = −δ − ρ (ct+1 − ct) + (ρ− θ) [vt+1 + ct+1 −Qt(vt+1 + ct+1)]
= −δ − ρ (ct+1 − ct) + (ρ− θ) [vt+1 + ct+1 − ct −Qt(vt+1 + ct+1 − ct)]

Differentiating with respect to ρ gives:

Ds1
t+1,t = − (ct+1 − ct) +

[
v1

t+1 + ct+1 − ct −Qt(v
1
t+1 + ct+1 − ct)

]

+(1− θ)
[
Dv1

t+1 − Ẽ
(
Dv1

t+1|Ft

)]

= v1
t+1 − 1

β
v1

t + (1− θ)
[
Dv1

t+1 − Ẽ
(
Dv1

t+1|Ft

)]
.

Note that

v1
t+1 −

1

β
v1

t = Uvxt+1 − 1

β
Uvxt +

(
1− 1

β

)
µv

= Uv

(
G− 1

β
I

)
xt +

(
1− 1

β

)
µv + UvHwt+1.

and

Dv1
t+1 − Ẽ

(
Dv1

t+1|Ft

)
= −1

2
(Hwt+1)

′ΥdvHwt+1 − (Hwt+1)
′[ΥdvGxt − Udv]

+
1

2
(1− θ)2γ(β)H ′ΥdvHγ(β)′ + (1− θ)γ(β)H ′[ΥdvGxt − Udv]

+
1

2
trace(H ′ΥdvH)

Combining these expressions we obtain:

Ds1
t+1,t =

1

2
wt+1

′Θ0wt+1 + wt+1
′Θ1xt + ϑ0 + ϑ1xt + ϑ2wt+1

where

Θ0 = (θ − 1)H ′ΥdvH
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Θ1 = (θ − 1)H ′ΥdvG

ϑ0 =

(
1− 1

β

)
µv +

1

2
(1− θ)3γ(β)H ′ΥdvHγ(β)′ − (1− θ)2γ(β)H ′U ′

dv +
1− θ

2
trace(H ′ΥdvH)

ϑ1 = Uv

(
G− 1

β
I

)
+ (θ − 1)2γ(β)H ′ΥdvG

ϑ2 = (1− θ)UdvH + UvH

The mean under the risk neutral measure for wt+1 is

[I + (ρ− 1)(θ − 1)H ′ΥdvH]−1

[−ργ(0) + (ρ− θ)γ(β) + (ρ− 1)(θ − 1) (Udv −H ′ΥdvGxt)] .

This mean can be interpreted as the negative of a risk premia. A component of this mean is
the undiscounted (by the risk free rate) price an investor is willing to pay for contingent claim
to the corresponding component of the shock wt+1. In a continuous time approximatoin, this
formula simplifies to the one reported in the paper.

B Calculating Eigenvalues

B.1 Proof of Theorem 5.1

Consider the first-order autoregressive specification in example 3.1:

xt+1 = Gxt + Hwt+1.

where G has eigenvalues with absolute values that are strictly less than one. The consumption
dynamics are:

ct+1 − ct = µc + Ucxt + γ0wt+1

First we study the ρ = 1 benchmark. For simplicity, we set ζ = 0, since a nonzero ζ has
a known impact on the eigenvalue and no impact on the eigenfunction. Write:

s1
t+1,t + πwt+1 = ξ0 + ξ1xt + ξ2wt+1

where

ξ0
.
= −δ − µc − (1− θ)2|γ(β)|2

2
ξ1

.
= −Uc

ξ2
.
= (1− θ)γ(β)− γ0 + π

γ(β) = γ0 + βUc(I − βG)−1H.
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B.1.1 Dominant Eigenfunction and Eigenvalue

We seek an eigenfunction that is log-linear:

log φ(x) = −ωx.

This eigenfunction should satisfy the equation:

E
[
exp[s1

t+1,t + πwt+1]φ(xt+1)|xt

]
= exp(−ν)φ(xt).

where exp(−ν) is the eigenvalue associated with eigenfunction ψ(xt). For a log linear eigen-
function to exist, the vector ω necessarily satisfies:

ξ1 − ωG = −ω,

which implies that
ω = ξ1(G− I)−1 = Uc(I −G)−1.

The negative logarithm of the eigenvalue is

ν = −ξ0 − |ξ2 − ωH|2
2

.

Plug in the formulas for ξ0, ξ1 and ξ2, and add back ζ, the we have

ν = δ + µc − ζ − |π − γ(β)|2
2

+ (θ − 1)γ(β) · [π − γ(1)] .

B.1.2 Eigenfunction for adjoint of the pricing operator

Next we need to compute an eigenfunction for the adjoint of the pricing operator. Guess an
eigenfunction of the form:

log ϕ(x) = −ω∗x

then this eigenfunction should satisfy the equation:

E
[
exp[s1

t+1,t + πwt+1]ϕ(xt)|xt+1

]
= exp(−ν∗)ϕ(xt).

where exp(−ν∗) is the eigenvalue associated with eigenfunction ψ∗(xt), and we will show
later ν and ν∗ are the same.

First compute the reverse time evolution of xt,

xt = G∗xt+1 + H∗w∗
t .

where w∗
t is a multivariate standard normal, independent of xt+1.

The matrix G∗ can be inferred by standard least squares formulas:

ΣG′Σ−1 = G∗.
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and the matrix H∗ can be inferred by factoring:

Σ−G∗ΣG∗′.

where Σ is the unconditional variance-covariance matrix of xt.
Write:

wt+1 = (H ′H)−1H ′(xt+1 −Gxt) = (H ′H)−1H ′ [(I −GG∗)xt+1 −GH∗w∗
t ] .

Thus:
s1

t+1,t + πwt+1 = ξ∗0 + ξ∗1xt+1 + ξ∗2w
∗
t

for

ξ∗0 = ξ0

ξ∗1 = ξ1G
∗ + ξ2(H

′H)−1H ′ (I −GG∗)

ξ∗2 = −ξ2(H
′H)−1H ′GH∗ + ξ1H

∗.

Then the adjoint problem solves:

E (exp [ξ∗0 + ξ∗1xt+1 + ξ∗2w
∗
t − ω∗(G∗xt+1 + H∗w∗

t )] |xt+1) = exp(−ν∗) exp(−ω∗xt+1)

This problem has the same formal structure as the initial eigenvector problem. The solution
is

ω∗ = ξ∗1(G
∗ − I)−1 = Uc(I −G∗)−1.

The negative logarithm of the eigenvalue is

ν∗ = −ξ∗0 −
|ξ∗2 − ω∗H∗|2

2
.

and it can be easily shown that ν and ν∗ are the same.

B.1.3 Expected valuation rate of return

As we have shown in section 5.4, the expected valuation rate of return is the sum of the
decay rate of dividend growth and that of the pricing operator, ε + ν, where

ε = ζ +
|π|2
2

hence

ε + ν = ζ +
|π|2
2
− ξ0 − |ξ2 − ωH|2

2
plug in the formulas ξ0, ξ2 and ω, and rearrage terms we have

ε + ν = ς∗ + π∗ · π
where

ς∗ = γ(1) + (θ − 1)γ(β)

π∗ = µc + δ + (1− θ)γ(1) · γ(β)− |γ(1)|2
2
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B.2 Eigenvalue derivative

Consider next a derivative of the dominant eigenvalue with respect to ρ. Let q denote the
stationary density for xt. This vector is normally distributed with mean zero and covariance
matrix:

Σ =
∞∑

j=0

(Gj)HH ′(Gj)′.

We use the relation:

exp(−ν) =
E [exp(st+1,t + πwt+1)φ(xt+1)ϕ(xt)]

E [φ(xt)ϕ(xt)]
.

Write

Ds1
t+1,t =

1

2
wt+1

′Θ0wt+1 + wt+1
′Θ1xt + ϑ0 + ϑ1xt + ϑ2wt+1.

Then
d exp(−ν)

dρ
|ρ=1=

E
[
Ds1

t+1,t exp(s1
t+1,t + πwt+1)φ(xt+1)ϕ(xt)

]

E[φ(xt)ϕ(xt)]
,

and hence
dν

dρ
|ρ=1= −E

[
Ds1

t+1,t exp(s1
t+1,t + πwt+1)φ(xt+1)ϕ(xt)

]

exp(−ν)E[φ(xt)ϕ(xt)]
. (21)

We take three steps to compute this eigenvalue derivative

B.2.1 Step one: computing the denominator

We must compute:

E[φ(xt)ϕ(xt)] =

∫
exp[−(ω + ω∗)x]q(x)dx

From the lognormal formula, this is

exp

[
(ω + ω∗)Σ(ω + ω∗)′

2

]
.

B.2.2 Step two: computing the numerator

We have already evaluated the denominator, but it remains to compute the numerator:

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)

]

We do so by applying the Law of Iterated Expectations, and first computing:

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)|xt

]
.
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Note that

s1
t+1,t + πwt+1 + log[φ(xt+1)] + log[ϕ(xt)]

= ξ0 + (ξ1 − ωG− ω∗)xt + (ξ2 − ωH)wt+1

=

[
ξ0 +

|ξ2 − ωH|2
2

− (ω + ω∗)xt

]
+

[
(ξ2 − ωH)wt+1 − |ξ2 − ωH|2

2

]
.

We use the second term in the square brackets to change the shock distribution. In particular,
we change the mean of wt+1 from zero to [(ξ2 − ωH)]. Thus

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)|xt

]

= exp

[
ξ0 +

|ξ2 − ωH|2
2

− (ω + ω∗)xt

]

×
[
1

2
trace(Θ0) + (ξ2 − ωH)′Θ1xt + ϑ0 + ϑ1xt + ϑ2(ξ2 − ωH)

]

= exp(−ν) exp [−(ω + ω∗)xt]

×[(1/2)trace(Θ0) + (1/2)(ξ2 − ωH)′Θ0(ξ2 − ωH)

+(ξ2 − ωH)′Θ1xt + ϑ0 + ϑ1xt + ϑ2(ξ2 − ωH)]

Next we compute the unconditional expectation. Again we change probability distributions.
To simply the calculation, we adopt a change in measure. We change the mean of xt from
normal mean zero and covariance matrix Σ to normal with mean

µ∗x
.
= −Σ(ω + ω∗)′

and covariance Σ. Using this transformation we find that

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)|xt

]

= exp(−ν) exp

(
µ∗x

′Σ−1µ∗x
2

)

×[
1

2
trace(Θ0) +

1

2
(ξ2 − ωH)′Θ0(ξ2 − ωH)

+(ξ2 − ωH)′Θ1µ
∗
x + ϑ0 + ϑ1µ

∗
x + ϑ2(ξ2 − ωH)].

B.2.3 Step three: combining results

We compute the right-hand side of (21) by combining numerator and denominator terms:

dν

dρ
|ρ=1 = −1

2
trace(Θ0)− 1

2
(ξ2 − ωH)′Θ0(ξ2 − ωH)

−(ξ2 − ωH)′Θ1µ
∗
x − ϑ0 − ϑ1µ

∗
x − ϑ2(ξ2 − ωH).
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